2025
197. Asymmetric-Orbital-Hybridization Induced Electron Redistribution Enabling Stable Sodium Layered Oxides
Chen Cheng, Yihao Shen, Chi Chen, Simin Tang, Zengqing Zhuo, Qianjie Niu, Cheng Yuan, Tong Chen, Lei Wang, Jinghua Guo, Dan Sun*, Liang Zhang*
Adv. Energy Mater., 2025, e04261.
https://doi.org/10.1002/aenm.202504261

196. Disorder-Induced Targeted Formation of Amorphous Lithium Sulfide for Ah-Level Lithium–Sulfur Batteries
Lei Wang, Hongtai Li, Zhiwei Lu, Cheng Yuan, Tianran Yan, Tong Chen, Chen Cheng, Zheng Zhou, Liang Zhang*
Adv. Funct. Mater., 2025, e17003.
https://doi.org/10.1002/adfm.202517003

195. Strengthened π-type interaction in layered oxide cathodes with reversible anionic redox for sodium-ion batteries
Zheng Zhou, Chen Cheng, Shuyuan Chen, Tong Chen, Lei Wang, Tianran Yan, Weidong Xu, Shiqi Shen, Jianrong Zeng*, Liang Zhang*
Chem. Sci., 2025, accepted.
https://doi.org/10.1039/D5SC04609B

194. Spatio-Temporal Coordination Engineered Core-Shell Zeolitic lmidazolate Frameworks Enable Self-Adaptive Electrocatalyst Reconstruction and Self-Tandem Sulfur Conversion
Hongtai Li, Lei Wang, Peng Chen, Cheng Yuan, Pan Zeng, Xiao Xia, Liang Zhang*
ACS Nano, 2025, 19, 20, 19464–19476
193. Incorporating Co Nanoparticles into SiOx Anodes for High-Performance Lithium-Ion Batteries
Yang Ling, Tong Chen, Shuyuan Chen, Bin Wang,* Pan Zeng, Shiqi Shen, Cheng Yuan, Zheng Zhou, Jionghui Wang,* Liang Zhang*
ACS Applied Energy Mater., 2025, 8, 10, 6723–6732

192. Activating Transition Metal Oxides through In-situ Regulationof Lower Hubbard Band for Catalytic Conversion of Lithium Polysulfides
Pan Zeng, Yinqi Hu, Bin Su, Xiaojuan Chen, Xiaoqin Li, Xiaofeng Zhao, Lei Wang, Genlin Liu, Wei Luo, Cheng Yuan, Yingze Song*, Qingyuan Wang*, Liang Zhang*
ACS Nano, 2025, 19, 18, 17824–17833
https://doi.org/10.1021/acsnano.5c03325

191. In-situ Molecular Self-Assembly for Dendrite-Free Aqueous Zn-ion Batteries
Yawen Xie, Lei Wang, Jiechang Gao, Shucheng Shi, Ni Yin, Shiqi Shen, Shusheng Huang, Tianran Yan, Yang Ling, Qi Chen, Pan Zeng, Yong Han*, Zhi Liu, Tiefeng Liu*, Liang Zhang*
Adv. Funct. Mater., 2025, 2504587
https://doi.org/10.1002/adfm.202504587

190. A Bifunctional Fibrous Scaffold Implanted with Amorphous Co2P as both Cathodic and Anodic Stabilizer for High-Performance Li─S Batteries
Gang Zhao, Tianran Yan*, Lei Wang, Cheng Yuan, Tong Chen, Bin Wang*, Chen Cheng, Pan Zeng, Yude Su*, Liang Zhang*
Adv. Sci., 2025, 2501153
https://doi.org/10.1002/advs.202501153

189. Improving ZnS oxidation kinetics through nucleophilic regulation for high-performance zinc-sulfur batteries
Shiqi Shen, Cheng Yuan, Yan Xu*, Yawen Xie, Lei Wang, Tianran Yan, Shuyuan Chen, Liyao Wang, Tiefeng Liu*, Liang Zhang*
Adv. Funct. Mater., 2024, 2420258
https://doi.org/10.1002/adfm.202420258

188. Modulated t2g orbitals of spinel oxides for enhanced catalytic conversion of polysulfides in Li-S batteries
Tong Chen+, Cheng-Wei Kao+, Lei Wang, Cheng Yuan, Tianran Yan, Xin Ma, Pan Zeng, Liang Zhang*, Ting-Shan Chan*
Mater. Today Chem., 2025, 43, 102490
https://doi.org/10.1016/j.mtchem.2024.102490

2024
187. Enhanced basal-plane catalytic activity of MoS2 by constructing an electron bridge for high-performance lithium-sulfur batteries
Genlin Liu+, Tianran Yan+, Yiyun Zhang, Pan Zeng, Bin Wang*, Cheng Yuan, ChenCheng, Lei Wang, Xiaosong Liu, Jianrong Zeng*, Liang Zhang*
Nano Lett., 2024, accepted.
https://doi.org/10.1021/acs.nanolett.4c04139

186. Stabilized oxygen vacancy chemistry toward high-performance layered oxide cathodes for sodium-ion batteries
Chen Cheng+, Zengqing Zhuo+, Xiao Xia+, Tong Liu, Yihao Shen, Cheng Yuan, Pan Zeng, Duanyun Cao, Ying Zou, Jinghua Guo, Liang Zhang*
ACS Nano, 2024, accepted.
https://doi.org/10.1021/acsnano.4c14724

185. Efficient polyolefin upcycling over single-atom alloy catalyst
Mingyu Chu, Weilin Tu, Zechao Zhuang, Panpan Xu, Xuefei Weng, Jianhua Wang, Tianran Yan, Lin Zhang, Muhan Cao, Liang Zhang, Haiping Lin, Xing Fan*, Qiao Zhang, Dingsheng Wang, Jinxing Chen*
CCS Chem., 2024, accepted.
https://doi.org/10.31635/ccschem.024.202404989
184. Regulation ofsulfurmoleculesforadvancedlithium-sulfurbatteries:strategies,mechanisms,andcharacterizations
Lei Wang, Liang Zhang*
Surf. Sci. Tech., 2024, accepted.
https://doi.org/10.1007/s44251-024-00060-7

183. A universal interfacial reconstruction strategy based on converting residual alkali for sodium layered oxide cathodes:marvelous air stability, reversible anion redox and full cell applications
Lingyi Kong, Jiayang Li, Hanxiao Liu, Yanfang Zhu, Xinyu Zhang, Haiyu Zhang, Haiyan Hu, Hanghang Dong, Shuangqiang Chen, Liang Zhang, Jiazhao Wang, Yao Xiao*, and Shulei Chou*
J. Am. Chem. Soc., 2024,accepted.
182. Achieving complete solid-solution reaction in layered cathodes with reversible oxygen redox for high-stable sodium-ion batteries
Xi Zhou,+ Tong Liu,+ Chen Cheng,*Xiao Xia, Yihao Shen, Lei Wang, Yawen Xie, Bin Wang,*Ying Zou, Duanyun Cao, Yuefeng Su,*and Liang Zhang*
Energy Storage Mater., 2024, 74, 103895.
https://doi.org/10.1016/j.ensm.2024.103895

181. Graphene chainmail-enabledmodulateprecatalyst phase evolution for sustainable polysulfide electrocatalysis in Li-S batteries
Jiaxi Gu, Zixiong Shi, Tianran Yan, Meng Tian, Ziang Chen, Shaoqing Chen, Yifan Ding, Miaoyu Lu, Yuhan Zhou, Jincan Zhang, Liang Zhang, Zhongfan Liu, Jingyu Sun*
Small, 2024, 2407196.
https://doi.org/10.1002/smll.202407196
180. Reversible oxygen redox with enhanced structural stability through covalency modulation for layered oxide cathodes
Shuyuan Chen, Chen Cheng, Xiao Xia, Lei Wang, Tong Chen, Yihao Shen, Xi Zhou, Weidong Xu, Zheng Zhou, Pan Zeng, Liang Zhang*
Small, 2024, 2406542.
https://doi.org/10.1002/smll.202406542

179. Bismuth atoms dispersed on palladium nanosheets promote electrochemical glycerol oxidation to C3 products
Zhenghao Mao, Lin Jia, Xinnan Mao, Xue Ding, Binbin Pan, Tianran Yan, Jie Xu, Liang Zhang, Lu Wang*, Na Han*, and Yanguang Li*
J. Mater. Chem. A, 2024, 12, 24136-24143.
https://doi.org/10.1039/D4TA03892D
178. Tuning adsorbate-mediated strong metal-support interaction by oxygen vacancy: a case study in Ru/TiO2
Juan Li, Lin Zhang, Xingda An,Kai Feng, Xuchun Wang, Jiari He, Yuhui Feng, Liang Zhang, Binhang Yan, Xiaohong Zhang, Chaoran Li, Le He
Angew. Chem. Int. Ed., 2024, 63, e202407025.
https://doi.org/10.1002/anie.202407025
177. Achieving a deeply desodiated stabilized cathode material by the high entropy strategy for sodium-ion batteries
Zhaoguo Liu, Rixin Liu, Sheng Xu, Jiaming Tian, Jingchang Li, Haoyu Li, Tao Yu, Shiyong Chu,Anita M. D'Angelo,Weikong Pang, Liang Zhang, Shaohua Guo*, Haoshen Zhou*
Angew. Chem. Int. Ed., 2024, 63, e202405620.
https://doi.org/10.1002/anie.202405620
176. Theory-guided optimization of coordination sites via d-band modulation for efficient single-atomic Li-S catalysis
Miaoyu Lu,+ Tianran Yan,+ Yifan Ding, Shaoqing Chen, Ziang Chen, Jiaxi Gu, Xiaopeng Chen, Liang Zhang,*Meng Tian,*Jingyu Sun*
Energy Storage Mater., 2024, 70, 103458.
https://doi.org/10.1016/j.ensm.2024.103458
175. Unraveling the catalytic redox mechanism of lithium-sulfur batteries through advanced in-situ/operando characterizations
Pan Zeng, Cheng Yuan, Bin Su, Genlin Liu, Jiechang Gao, Kun Yang, Qingyuan Wang*, Liang Zhang*
Sci. China Chem., 2024, accepted.
https://doi.org/10.1007/s11426-024-2219-x

174. Modulating interfacial Zn2+ desolvation and transport kinetics through coordination interaction toward stable anodes in aqueous Zn-ion batteries
Jiechang Gao+, Yawen Xie+, Lei Wang, Pan Zeng, and Liang Zhang*
Small, 2024, 2405522.
https://doi.org/10.1002/smll.202405522

173. Steering sulfur reduction kinetics of lithium-sulfur batteries by interfacial microenvironment modulation
Cheng Yuan, Lei Wang, Pan Zeng*, ChenCheng, Hongtai Li, Tianran Yan, Genlin Liu, Gang Zhao, Xin Ma, Ting-Shan Chan, Liang Zhang*
Energy Storage Mater., 2024, 71, 103622.
https://doi.org/10.1016/j.ensm.2024.103622

172. Influence of Carbon Sources on Silicon Oxides for Lithium-ion Batteries: A Review
Yang Ling, Pan Zeng, Bin Wang, Liang Zhang*, Jionghui Wang*
J. Mater. Chem. A, 2024, 12, 14957-14974.
https://doi.org/10.1039/D4TA02708F

171. Modulating the Interfacial Microenvironment via Zwitterionic Additive for Long-Cycling Aqueous Zn-ion Batteries
Yawen Xie, Shuang Feng, Jiechang Gao, Tao Cheng*, Liang Zhang*
Sci. China Mater., 2024, 67, 2898-2907.
https://doi.org/10.1007/s40843-024-2972-7

170. Chemomechanics Engineering Promotes the Catalytic Activity of Spinel Oxides for Sulfur Redox Reaction
Lei Wang, Hongtai Li, Tianran Yan, Cheng Yuan, Genlin Liu, Gang Zhao, Pan Zeng, Liang Zhang*
Adv. Funct. Mater., 2024, 34, 2404184.
https://doi.org/10.1002/adfm.202404184

169. Biphase-to-MonophaseStructureEvolutionof Na0.766+xLixNi0.33-xMn0.5Fe0.1Ti0.07O2 Toward Longer Cycling Life for Na-Ion Batteries
Mengting Liu, Zhiwei Cheng, Xu Zhu, Haojie Dong, Tianran Yan, Liang Zhang*, Lu Zheng, Hu-Rong Yao*, Xian-Zuo Wang, LianzhengYu, Bing Xiao*, Yonghong Cheng and Peng-Fei Wang*
Carbon Energy, 2024, 6, e565.
https://doi.org/10.1002/cey2.565
168. Enhanced Photochemical Effects of Plasmonic Cluster Catalysts through Aggregated Nanostructures
Xu Hu, Zhijie Zhu, Yuxuan Zhou, Shuang Liu, Chunpeng Wu, Jiaqi Wang, Yihao Shen, Tianran Yan, Liang Zhang, Jinxing Chen, Kai Feng, Xingda An,*Chaoran Li,*and Le He*
Green Chem., 2024, 26, 6994-7001.
https://doi.org/10.1039/d4gc00560k
167. Formation of 2D Amorphous Lithium Sulfide Enabled by Mo2C Clusters Loaded Carbon Scaffold for High-performanceLithiumSulfur Batteries
Huadong Yuan, Jianhui Zheng, Gongxun Lu, Liang Zhang, Tianran Yan, Jianmin Luo, Yao Wang, Yujing Liu, Tianqi Guo*, Jianwei Nai*, Xinyong Tao*
Adv. Mater., 2024, 36, 2400639.
https://doi.org/10.1002/adma.202400639
166. Cationic and Anionic Redox of Battery Cathodes Investigated by Advanced Synchrotron-based Mapping of Resonant Inelastic X-ray Scattering
Chen Cheng, Zengqing Zhuo, Shuyuan Chen, Xi Zhou, Chen Yuan, Pan Zeng, Jinghua Guo,* and Liang Zhang*
Adv. Funct. Mater., 2024, 34, 2403442.
https://doi.org/10.1002/adfm.202403442

165. Fast Na+ Kinetics and Suppressive Voltage Hysteresis Enabled by a Rational High-Entropy Strategy for Sodium Oxide Cathodes
Xian-Zou Wang, Yuting Zuo, Yuanbin Qin, Xu Zhu, Shao-Wen Xu, Yu-Jie Guo, Tianran Yan, Liang Zhang, Zhibin Gao*, Lianzheng Yu, Mengting Liu, Ya-Xia Yin, Yonghong Cheng*, Peng-Fei Wang* and Yu-Guo Guo*
Adv. Mater., 2024, 36, 2312300.
https://doi.org/10.1002/adma.202312300
164. Grave-to-Cradle Photothermal Upcycling of Waste Polyesters over Spent LiCoO2
Xiangxi Lou, Penglei Yan, Qingye Li, Binglei Jiao, Panpan Xu,*Lei Wang, Liang Zhang, Muhan Cao, Guiling Wang, Qiao Zhang, Jinxing Chen*
Nat. Commun, 2024, 15, 2730.
https://doi.org/10.1038/s41467-024-47024-x
163. Molecular Modulation of Nickel-Salophen Organic Frameworks Enables Efficient Photoreduction of Carbon Dioxide at Varying Concentrations
Xiaohan Yu,† Mingzi Sun,† Tianran Yan, Lin Jia, Mingyu Chu, Liang Zhang, Wei Huang,* Bolong Huang,* and Yanguang Li*
Energy Environ. Sci., 2024, 17, 2260-2268.
https://doi.org/10.1039/d3ee04121b
162. Stable Interfacial Ruthenium Species for High-Efficient Polyolefin Upcycling
Ping Hu, Congyang Zhang, Mingyu Chu, Xianpeng Wang, Lu Wang, Youyong Li, Tianran Yan, Liang Zhang, Zhifeng Ding, Muhan Cao, Yifan Li, Yi Cui, Qiao Zhang, Jinxing Chen,* Lifeng Chi*
J. Am. Chem. Soc., 2024, 146, 7076-7087.
https://doi.org/10.1021/jacs.4c00757
161. From Oxygen Redox to Sulfur Redox: A Paradigm for Li-Rich Layered Cathodes
Jing-Chang Li, Jiayi Tang, Jiaming Tian, Chen Cheng, Yuxin Liao, Bingwen Hu, Tao Yu, Haoyu Li, Zhaoguo Liu, Yuan Rao, Yu Deng, Liang Zhang, Xiaoyu Zhang, Shaohua Guo*, Haoshen Zhou*
J. Am. Chem. Soc. 2024, 146, 7274-7278.
https://doi.org/10.1021/jacs.3c11569
160. Achieving structurally stable O3-type layered oxide cathodes through site-specific cation-anion co-substitution for sodium-ion batteries
Yihao Shen, Chen Cheng, Xiao Xia, Lei Wang, Xi Zhou, Pan Zeng, Jianrong Zeng*, and Liang Zhang*
J. Energy Chem., 2024, 93, 411-418.
https://doi.org/10.1016/j.jechem.2024.02.040

159. Unveiling Charge Compensation Mechanisms in Na2/3MgxNi1/3-xMn2/3O2 Cathode Materials: Insights into Cationic and Anionic Redox
Yanli Zhang,# Zengqing Zhuo,# Tianran Yan, Wenjuan Zhang, Xiaoning Li, Jiakun Zhou, Wenzhang Zhou, Yan Feng, Liang Zhang, Jing Mao, Ding Zhang, Wanli Yang, Jinghua Guo,* and Kehua Dai*
Mater. Today Energy, 2024, 41, 101534.
https://doi.org/10.1016/j.mtener.2024.101534
158. Imparting selective polysulfide conversion via geminal-atom moieties in lithium-sulfur batteries
Yifan Ding#, Tianran Yan#, Jianghua Wu#, Meng Tian*, Miaoyu Lu, Conglei Xu, Haorui Zhao, Yifei Wang*, Xiaoqing Pan, Shi Xue Dou, Liang Zhang*, and Jingyu Sun*
Applied Catalysis B: Environmental, 2024, 343, 123553.
https://doi.org/10.1016/j.apcatb.2023.123553
157. Unraveling and suppressing voltage decay of high-capacity cathode materials for sodium-ion batteries
Luoran Sun,‡ Zhonghan Wu,‡ Machuan Hou, Youxuan Ni, Haoxiang Sun, Peixin Jiao, Haixia Li, Wei Zhang, Liang Zhang, Kai Zhang,* Fangyi Cheng, and Jun Chen
Energy Environ. Sci.,2024, 17, 210.
https://doi.org/10.1039/D3EE02817H
156. Regulating Oxygen Redox Chemistry through the Synergistic Effect of Transition-Metal Vacancy and Substitution Element for Layered Oxide Cathodes
Chen Cheng, Tianran Yan, Cheng Yuan, Haolv Hu, Xiao Xia, Yihao Shen, Xi Zhou, Pan Zeng, and Liang Zhang*
Small, 2024, 20, 2306695.
https://doi.org/10.1002/smll.202306695

155. Research progress in X-ray spectroscopy investigation of cathode materials for high-energy-density secondary batteries
Shuyuan Chen, Chen Cheng, Xiao Xia, Huanxin Ju, and Liang Zhang*
Energy Storage Science and Technology, 2024, 13, 113-129
https://doi.org/10.19799/j.cnki.2095-4239.2023.0802
2023
154. Complete metal recycling from lithium-ion batteries enabled by hydrogen evolution catalyst reconstruction
Yuan Zhang, Junyan Li, Wenru Zhao, Tianran Yan, Liang Zhang, Wei Zhang*, Donghai Mei*, and Jihong Yu*
J. Am. Chem. Soc., 2023, 145, 27740.
https://doi.org/10.1021/jacs.3c10188
153. Constructing a built-in electron reservoir to dynamically coordinate bidirectional polysulfides conversion for lithium-sulfur batteries with a wide working temperature range
Tianran Yan, Jie Feng, Hongtai Li, Gang Zhao, Lei Wang, Pan Zeng, Tiefeng Liu*, Youyong Li*, and Liang Zhang*
Energy Storage Mater., 2023, 63, 103061.
https://doi.org/10.1016/j.ensm.2023.103061

152. Three-Dimensional π−d Conjugated Coordination Polymer Enabling Long-Life Magnesium-Ion Storage
Shuo Feng, Mochun Zhang, Yanxia Ma, Xue Ding, Tianran Yan, Yunling Wu, Wei Huang, Liang Zhang, Hualin Ye*, Yujin Ji*, Youyong Li, Yanguang Li*
Adv. Mater., 2023, 35, 2307736.
https://doi.org/10.1002/adma.202307736
151 Novel Low-strain Layered/rocksalt Intergrown Cathode for High-energy Li-ion Batteries
Lifeng Xu, Shi Chen, Yuefeng Su, Xing Shen, Jizhuang He, Maxim Avdeev, Wang Hay Kan, Lai Chen, Duanyun Cao, Yun Lu, Lian Wang, Meng Wang, Liying Bao, Liang Zhang, Feng Wu,*and Ning Li*
ACS Appl.Mater. Interfaces, 2023, 15, 54559.
https://doi.org/10.1021/acsami.3c13858
150. Tuning Dual-Atom Mediator Toward High-Rate Bidirectional Polysulfide Conversion in Li–S Batteries
Yifan Ding, Zhongti Sun, Tianran Yan, Jianghua Wu, Lin Shen, Zixiong Shi, Yuhan Wu, Menglei Wang, Yu Deng, Liang Zhang, Qiang Zhang, and Jingyu Sun*
J. Energy Chem., 2023, 87, 462-472.
https://doi.org/10.1016/j.jechem.2023.08.032
149. Ultra-high energy density in layered sodium-ion battery cathodes through balancing lattice-oxygen activity and reversibility
Hangyu Lu,* Shiyong Chu,* Jiaming Tian, Qi Wang, Chuanchao Sheng, Chen Cheng, Rixin Liu, Anita M. D’Angelo, Wei Kong Pang, Liang Zhang, Shaohua Guo,† and Haoshen Zhou
Adv. Funct. Mater.,2024, 34, 2305470.
https://doi.org/10.1002/adfm.202305470
148. Role ofMetalPrecursorinPreparing Dual-Atom Catalysts for Oxygen Reduction Reaction
Xiu Zhu, Genlin Liu, Xiafang Tao, Pengwei Huang, Guangbo Chen, Juan Yang, Liang Zhang, Yazhou Zhou*
ACS Omega, 2023, 8, 41708.
https://doi.org/10.1021/acsomega.3c06005
147. Strategies foroptimizingthe Znanode/electrolyteinterfacestowardstableZn-basedbatteries
Jiechang Gao, Yawen Xie, Pan Zeng, Liang Zhang*
Small Methods, 2023, 7, 2300855.
https://doi.org/10.1002/smtd.202300855

146. Direct Recycling of Spent Li-ion Batteries: Challenges and Solutions towards Practical Applications
Gaolei Wei, Yuxuan Liu, Binglei Jiao, Nana Chang, Mengting Wu, Yuncheng Zhu, Yinhai Liu, Fenggang Liu, Xiao Lin, Jiangxing Chen, Liang Zhang, Chunling Zhu,* Guiling Wang,* Panpan Xu,* Jiangtao Di,* and Qingwen Li
iScience, 2023, 26, 107676.
https://doi.org/10.1016/j.isci.2023.107676
145. In Situ Reconstruction of Electrocatalysts for Lithium-Sulfur Batteries: Progress and Prospects
Pan Zeng, Bin Su, Xiaolian Wang, Xiaoqin Li, Cheng Yuan, Genlin Liu, Kehua Dai, Jing Mao, Dongliang Chao,* Qingyuan Wang,* and Liang Zhang*
Adv. Funct. Mater., 2023, 33, 2301743.
https://doi.org/10.1002/adfm.202301743

144. RegulatingInnerHelmholtzPlanewithASmallAddition of High Donor Additive for Efficient Zn Anode Reversibility
Jinrong Luo, Liang Xu, Yijing Zhou, Tianran Yan, Yanyan Shao, Dongzi Yang, Liang Zhang, Zhou Xia, Tianheng Wang, Liang zhang, Tao Cheng,* Yuanlong Shao*
Angew. Chem. Int. Ed., 2023, 135, e202302302.
https://doi.org/10.1002/anie.202302302
143. Molecular Modulation of Sequestered Copper Sites for Efficient Electroreduction of Carbon Dioxide to Methane
Kefan Zhang, Jie Xu, Tianran Yan, Lin Jia, Jie Zhang, Chaochen Shao, Liang Zhang, Na Han*, and Yanguang Li*
Adv. Funct. Mater., 2023, 33, 2214062.
https://doi.org/10.1002/adfm.202214062
142. Covalency modulation enables stable Na-rich layered oxide cathodes for Na-ion batteries
Xi Zhou, Manling Ding, Xiao Xia, Haolv Hu, Yihao Shen, Stanislav Fedotov, and Liang Zhang*
Electronic Structure, 2023, 5, 014004.
https://doi.org/10.1088/2516-1075/acba6e
141. Steering the liquid-solid redox conversion of lithium-selenium batteries through ultrafine MoC catalyst
Xin Ma, Cheng Yuan, Genlin Liu, Lei Wang, Tianran Yan, Pan Zeng, and Liang Zhang*
Chemical Communications, 2023, 59, 11208.
https://doi.org/10.1039/D3CC03633B

140. Local Construction of Mn-based Layered Cathodes through Covalency Modulation for Sodium-ion Batteries
Haolv Hu, Cheng-Wei Kao, Chen Cheng, Xiao Xia, Yihao Shen, Xi Zhou, Genlin Liu, Lei Wang, Pan Zeng, Jing Mao, Ting-Shan Chan,* and Liang Zhang*
ACS Appl.Mater. Interfaces, 2023, 15, 30332.
https://doi.org/10.1021/acsami.3c05516

139. Dynamicevolutionofelectrocatalyticmaterialsfor Li-Sbatteries
Cheng Yuan, Hongtai Li, Genlin Liu, Pan Zeng, Jing Mao, Liang Zhang*
Mater. Chem. Front., 2023, 7, 3543-3559.
https://doi.org/10.1039/D3QM00326D

138. Electrochemical Restoration of Battery Materials Guided by Synchrotron Radiation Technology for Sustainable Lithium-Ion Batteries
Lei Wang+, Yihao Shen+, Pan Zeng, Junxia Meng, Tiefeng Liu*, and Liang Zhang*
Small Methods, 2023, 7, 2201658.
https://doi.org/10.1002/smtd.202201658

137. Field-Assisted Electrocatalysts Spark Sulfur Redox Kinetics: From Fundamentals to Applications
Hongtai Li, Yanguang Li,*Liang Zhang,*Zhongwei Chen, and Xueliang Sun
Interdisp. Mater., 2023, 2, 390-415.
https://doi.org/10.1002/idm2.12087

136. In Situ Non-Topotactic Reconstruction-Induced Synergistic Active Centers for Polysulfide Cascade Catalysis
Pan Zeng, Hao Zou, Chen Cheng, Lei Wang, Cheng Yuan, Genlin Liu, Jing Mao, Ting-Shan Chan, Qingyuan Wang,* and Liang Zhang*
Adv. Funct. Mater., 2023, 33, 2214770.
https://doi.org/10.1002/adfm.202214770

135. Facile Zn2+ Desolvation EnabledbylocalCoordinationEngineering for Long-Cycling Aqueous Zinc-Ion Batteries
Liyan Ding, Lei Wang, Jiechang Gao, Tianran Yan, Hongtai Li, Jing Mao, Fei Song, Stanislav Fedotov, Luo-Yueh Chang, Ning Li, Yuefeng Su,* Tiefeng Liu,* and Liang Zhang*
Adv. Funct. Mater., 2023, 33, 2301648.
https://doi.org/10.1002/adfm.202301648

134. Precisely Optimizing Polysulfides Adsorption and Conversion by Local Coordination Engineering for High-Performance Li-S Batteries
Cheng Yuan, Xiangcong Song, Pan Zeng, Genlin Liu, Shaohui Zhou, Gang Zhao, Hongtai Li, Tianran Yan, Jing Mao, Hao Yang, Tao Cheng, Jinpeng Wu, Liang Zhang*
Nano Energy, 2023, 110, 108353.
https://doi.org/10.1016/j.nanoen.2023.108353

133. Cooperative Catalysis of Polysulfides in Lithium–Sulfur Batteries through Adsorption Competition by Tuning Cationic Geometric Configuration of Dual-activeSitesinSpinel Oxides
Hongtai Li+, Pei Shi+, Lei Wang, Tianran Yan, Tong Guo, Xiao Xia, Chi Chen, Jing Mao, Dan Sun, and Liang Zhang*
Angew. Chem. Int. Ed., 2023, 135, e202216286.
https://doi.org/10.1002/anie.202216286

132. Mo2TiC2 MXene-Supported Ru Clusters for Efficient Photothermal Reverse WaterGasShift
Zhiyi Wu, Jiahui Shen, Chaoran Li,*Chengcheng Zhang, Kai Feng, Zhiqiang Wang, Xuchun Wang, Debora Motta Meira, Mujin Cai, Dake Zhang, Shenghua Wang, Mingyu Chu, Jinxing Chen, Yuyao Xi, Liang Zhang, Tsun-Kong Sham, Alexander Genest, Günther Rupprechter, Xiaohong Zhang,*Le He*
ACS Nano, 2023, 17, 1550.
https://doi.org/10.1021/acsnano.2c10707
131. Suppressing the Dynamic Oxygen Evolution of Sodium Layered Cathodes through Synergistic Surface Dielectric Polarization and Bulk Site-Selective Co-Doping
Xiao Xia, Tong Liu, ChenCheng, Hongtai Li, Tianran Yan, Haolv Hu, Yihao Shen, Huanxin Ju, Ting-Shan Chan, Zhenwei Wu, Yuefeng Su, Yu Zhao,*Duanyun Cao,*and Liang Zhang*
Adv. Mater., 2023, 35, 2209556.
https://doi.org/10.1002/adma.202209556

130. Ligand-Assisted Coupling Manipulation for Efficient and Stable FAPbI3 Colloidal Quantum Dot Solar Cells
Xuliang Zhang, Hehe Huang, Lujie Jin, Chao Wen, Chenyu Zhao, Chen Cheng, Hongshuai Wang, Liang Zhang, Youyong Li, Jianyu Yuan,* Wanli Ma*
Angew. Chem. Int. Ed, 2023, 135, e202214241.
https://doi.org/10.1002/anie.202214241
129. Sustainable Regeneration of Spent Graphite as Cathode Materials for High-Performance Dual-IonBattery
Mengting Zheng, Juncheng Wang, Shangshu Qian, Qiang Sun, Hao Chen, Liang Zhang, Zhenzhen Wu, Tiefeng Liu, Shanqing Zhang
ACS Sustain. Chem. Eng., 2023, 11, 4308-4316.
https://doi.org/10.1021/acssuschemeng.2c05124
128. Photothermal Catalytic Polyester Upcycling over Cobalt Single-Site Catalysts
Yu Liu, Xuchun Wang, Tianran Yan, Xiangxi Lou, Congyang Zhang, Muhan Cao, Liang Zhang,*Tsun-Kong Sham, Qiao Zhang, Le He, Jinxing Chen*
Adv. Funct. Mater.,2023, 33, 2210283.
https://doi.org/10.1002/adfm.202210283
127. Direct Recovery: A Low-Carbon Recycling Technology for Spent Lithium-IonBattery
Jiawei Wu,+ Mengting Zheng,+ Tiefeng Liu*, Yao Wang, Yujing Liu, Jianwei Nai, Liang Zhang*, Shanqing Zhang, Xinyong Tao*
Energy Storage Mater., 2023, 54, 120.
https://doi.org/10.1016/j.ensm.2022.09.029
2022
126. Photothermal Catalytic CO2 Hydrogenation with High Activity and Tailored SelectivityOverMonodispersed Pd-Ni Nanoalloys
Zhijie Zhu, Xu Hu, Xingda An, Mengqi Xiao, Liang Zhang, Chaoran Li,* Le He*
Chem. Asian J., 2022, 17, e202200993.
https://doi.org/10.1002/asia.202200993
125. Surface Defect Engineering of Bimetallic Oxide Pre-Catalyst Enables Kinetics-Enhanced Lithium-Sulfur Batteries
Gang Zhao, Cheng-Wei Kao, Zhonghao Gu, Shaohui Zhou, Luo-Yueh Chang, Tianran Yan, Chen Cheng, Cheng Yuan, Hongtai Li, Ting-Shan Chan,*and Liang Zhang*
ACS Appl.Mater. Interfaces, 2022, 14, 49680.
https://doi.org/10.1021/acsami.2c12507

124. Light-Triggered Sustainable Defect-Passivation for Stable PerovskitePhotovoltaics
Yi-Ran Shi, Kai-Li Wang, Yan-Hui Lou, Gen-Lin Liu, Chun-Hao Chen, Jing Chen, Liang Zhang, Zhao-Kui Wang*
Adv. Mater., 2022, 34, 2205338.
https://doi.org/10.1002/adma.202205338
123. Magnetic Field Manipulation of Tetrahedral Units in Spinel Oxides for Boosting Water Oxidation
Xiao Lyu, Yanan Zhang, Zhengwei Du, Hao Chen, Sicheng Li, Alexandre I. Rykov, Chen Cheng, Weina Zhang, Ling Chang, Wangkai, Junhu Wang, Liang Zhang, Qiang Wang, Chengxi Huang,*Erjun Kan*
Small, 2022, 18, 2204143.
https://doi.org/10.1002/smll.202204143
122. RegulatingElectronicStructure of Single-Atom Catalysts toward Efficient Bifunctional Oxygen Electrocatalysis
Jiapeng Ji, Lei Wu, Shiyu Zhou, Tong Qiu, Zeheng Li, Liguang Wang*, Liang Zhang, Lu Ma, Min Ling,*Shaodong Zhou,*Chengdu Liang
Small Methods, 2022, 6, 2101511.
https://doi.org/10.1002/smtd.202101511
121. Strengthened d-p Orbital Hybridization through Asymmetric Coordination Engineering of Single-Atom Catalysts for Durable Lithium-Sulfur Batteries
Genlin Liu,+ Wenmin Wang,+ Pan Zeng, Cheng Yuan, Lei Wang, Hongtai Li, Hao Zhang, Xuhui Sun, Kehua Dai, Jing Mao, Xin Li, Liang Zhang*
Nano Lett., 2022, 22, 6366.
https://doi.org/10.1021/acs.nanolett.2c02183

120. Integrated Photothermal Nanoreactors for Efficient Hydrogenation of CO2
Jiahui Shen, Rui Tang, Zhiyi Wu, Xiao Wang, Mingyu Chu, Mujin Cai, Chengcheng Zhang, Liang Zhang, Kui Yin, Le He* and Chaoran Li*
Transactions of Tianjin University, 2022, 28, 236.
https://doi.org/10.1007/s12209-022-00333-y
119. Precisely Modulating the Structural Stability and Redox Potential of Sodium Layered Cathodes through the Synergetic Effect of Co-doping Strategy
Chen Cheng, Haolv Hu, Cheng Yuan, Xiao Xia, Jing Mao, Kehua Dai, Liang Zhang*
Energy Storage Mater., 2022, 52, 10.
https://doi.org/10.1016/j.ensm.2022.07.030

118. Modulating eg Orbitals through Ligand Engineering to Boost the Electrocatalytic Activity of NiSe for Advanced Lithium-Sulfur Batteries
Tianran Yan, Jie Feng, Pan Zeng, Gang Zhao, Lei Wang, Cheng Yuan, ChenCheng, Youyong Li, and Liang Zhang,*
J. Energy Chem., 2022, 74, 317.
https://doi.org/10.1016/j.jechem.2022.07.025

117. Synergistic Interlayer and Defect Engineering of Hydrated Vanadium Oxide toward Stable Zn-Ion Batteries
Jiechang Gao, Chen Cheng, Liyan Ding, Genlin Liu, Tianran Yan, Liang Zhang*
Chem. Engineering J., 2022, 450, 138367.
https://doi.org/10.1016/j.cej.2022.138367

116. DemystifyingActivityOrigin of M−N−C Single-Atomic Mediators toward Expedited Rate-Determining Step in Li–S Electrochemistry
Jia Jin, Zhongti Sun, Tianran Yan, Zixiong Shi, Meiyu Wang, Ting Huang, Yifan Ding, Jingsheng Cai, Peng Wang, Liang Zhang*, and Jingyu Sun*
Small Science, 2022, 2, 2200059.
https://doi.org/10.1002/smsc.202200059
115. Enhanced Dual‐Directional Sulfur Redox via Biotemplated Single‐Atomic Fe‐N2 Mediator Promises Durable Li−S Batteries
Yifan Ding, Qiushi Cheng, Jianghua Wu, Tianran Yan, Zixiong Shi, Menglei Wang, Dongzi Yang, Peng Wang, Liang Zhang, Jingyu Sun*
Adv. Mater., 2022, 34, 2202256
https://doi.org/10.1002/adma.202202256
114. Achieving Reversible Mn2+/Mn4+ Double Redox Couple through Anionic Substitution in a P2-type Layered Oxide Cathode
Haolv Hu, Hung-ChiehHe, Chen Cheng, Tianran Yan, Xiao Xia, Chi Chen, Dan Sun, Ting-Shan Chan, Jinpeng Wu,* Liang Zhang*
Nano Energy, 2022, 99, 107390.
https://doi.org/10.1016/j.nanoen.2022.107390

113. Self-Standing Sulfur Cathodes Enabled by Single Fe Sites Decorated Fibrous Membrane for Durable Lithium-Sulfur Batteries
Gang Zhao, Qiujie Chen, Lei Wang, Tianran Yan, Hongtai Li, Cheng Yuan, Jing Mao, Xuefei Feng, Dan Sun,*Liang Zhang*
J. Mater. Chem. A, 2022, 10, 19893.
https://doi.org/10.1039/D2TA01936A

112. Dual Honeycomb‐Superlattice Enables Double‐High Activity and Reversibility of Anion Redox for Sodium‐Ion Battery Layered Cathodes
Qi Wang, Yuxin Liao, Xin Jin, ChenCheng, Shiyong Chu, Chuanchao Sheng, Liang Zhang, Bingwen Hu, Shaohua Guo,* Haoshen Zhou*
Angew. Chem. Int. Ed., 2022, 61, e202206625.
https://doi.org/10.1002/anie.202206625
111. Long-Enduring Oxygen Redox Enabling Robust Layered Cathodes for Sodium-Ion Batteries
Zhaoguo Liu, Shiyong Chu, Jianghua Wu, Chen Cheng, Liang Zhang, Shaohua Guo,* Haoshen Zhou*
Chem. Engineering J., 2022, 435, 134944.
https://doi.org/10.1016/j.cej.2022.134944
110. Theory-Guided Design of Hydrogen-Bonded Cobaltoporphyrin Frameworks for Highly Selective Electrochemical H2O2 Production in Acids
Xuan Zhao, Qi Yin, Xinnan Mao, Chen Cheng, Liang Zhang, Lu Wang,*Tian-Fu Liu,*Youyong Li and Yanguang Li*
Nature Commun.,2022, 13, 2721.
https://doi.org/10.1038/s41467-022-30523-0
109. Oxygen-Coordinated Low-NucleusClusterCatalystsfor Enhanced Electrocatalytic Water Oxidation
Jiapeng Ji, Yunpeng Hou, Shiyu Zhou, Tong Qiu, Liang Zhang, Lu Ma, Min Ling,*Shaodong Zhou,*Chengdu Liang*
Carbon Energy, 2022, 1-11.
https://doi.org/10.1002/cey2.216
108. Enhancing the Reversibility of Lattice Oxygen Redox Through Modulated Transition Metal-Oxygen Covalency for Layered Battery Electrodes
Chen Cheng, Chi Chen, Shiyong Chu, Tianran Yan, Haolv Hu, Xiao Xia, Xuefei Feng, Jinghua Guo, Dan Sun, Jinpeng Wu,* Shaohua Guo,* and Liang Zhang*
Adv. Mater., 2022, 34, 2201152.
https://doi.org/10.1002/adma.202201152

107. Boosting the Cycling Stability of Aqueous Zinc-Ion Batteries through Nanofibrous Coating of Bead-like MnOx Cathode
Liyan Ding, Jiechang Gao, Tianran Yan, Chen Cheng, Lo-Yueh Chang, Nian Zhang, Xuefei Feng, and Liang Zhang*
ACS Appl.Mater. Interfaces, 2022, 14, 17570.
https://doi.org/10.1021/acsami.2c03170

106. Converting n-alkanol to Conjugated Polyenal on Cu (110) SurfaceatMildTemperature
Zhengming Hao,+ Guyue Peng,+ Lina Wang, Xuechao Li, Ye Liu, Chaojie Xu, Kaifeng Niu, Honghe Ding, Jun Hu, Liang Zhang, Bin Dong, Haiming Zhang, Junfa Zhu, Lifeng Chi*
J. Phys. Chem. Lett., 2022, 13, 3276.
https://doi.org/10.1021/acs.jpclett.2c00369
105. Full-Dimensional Grain Boundary Stress Release for Flexible Perovskite Indoor Photovoltaics
Chun-Hao Chen, Zhen-Huang Su, Yan-Hui Lou, Yan-Jun Yu, Kai-Li Wang, Gen-Lin Liu, Yi-Ran Shi, Jing Chen, Jun-Jie Cao, Liang Zhang, Xing-Yu Gao, and Zhao-Kui Wang*
Adv. Mater., 2022, 34, 2200320.
https://doi.org/10.1002/adma.202200320
104. Design and Tailoring of Carbon-Al2O3 Double Coated Nickel-Based Cation-Disordered Cathodes Towards High-Performance Li-Ion Batteries
Zhenlu Yu,+ He Huang,+ Yunjian Liu,* Xingyu Qu, Yu Zhou, Aichun Dou, Mingru Su, Hong-Hui Wu,* Liang Zhang, Kehua Dai, Zaiping Guo, Tao Wan, Mengyao Li, Dewei Chu,*
Nano Energy, 2022, 96, 107071.
https://doi.org/10.1016/j.nanoen.2022.107071
103. Exceptionally Active and Stable RuO2 with Interstitial Carbon for Water Oxidation in Acid
Juan Wang,+ Chen Cheng,+ Qi Yuan,+ Hao Yang, Fanqi Meng, Qinghua Zhang, Lin Gu, Jianlei Cao, Leigang Li, Shu-Chih Haw, Qi Shao, Liang Zhang, Tao Cheng, Feng Jiao, Xiaoqing Huang*
Chem, 2022, 8, 1673.
https://doi.org/10.1016/j.chempr.2022.02.003
102. Recent Progress in Electronic Modulation of Electrocatalysts for High-Efficient Polysulfide Conversion of Li-Sbatteries
Pan Zeng, Cheng Yuan, Genlin Liu, Jiechang Gao, Yanguang Li,* Liang Zhang*
Chinese. J. Catal., 2022, 43, 2946.
https://doi.org/10.1016/S1872-2067(21)63984-0

101. Designing Principles of Advanced Sulfur Cathodes towards Practical Lithium-Sulfur Batteries
Hongtai Li, Yanguang Li*, Liang Zhang*
SusMat, 2022, 2, 34.
https://doi.org/10.1002/sus2.51

100. TiH2 Nanodots Exfoliated via Facile Sonication as Bifunctional Electrocatalysts for Li-S Batteries
Tianran Yan, Yu Wu, Fei Gong, Chen Cheng, Hao Yang, Jing Mao, Kehua Dai, Liang Cheng*, Tao Cheng*, Liang Zhang*
ACS Appl.Mater. Interfaces, 2022, 14, 6937.
https://doi.org/10.1021/acsami.1c23815

99. Anionic Redox Activities Boosted by Aluminum Doping in Layered Sodium-IonBatteryElectrode
Chen Cheng, Manling Ding, Tianran Yan, Jinsen Jiang, Jing Mao, Ting-Shan Chan, Ning Li*, Liang Zhang,*
Small Methods, 2022, 6, 2101524.
https://doi.org/10.1002/smtd.202101524

98. Improving Structural and Moisture Stability of P2-Layered Cathode Materials for Sodium-Ion Batteries
Jinsen Jiang, Hung-Chieh He, Chen Cheng, Tianran Yan, Xiao Xia, Manling Ding, Le He, Ting-Shan Chan*, Liang Zhang*
ACS AppliedEnergyMater., 2022, 5, 1252.
https://doi.org/10.1021/acsaem.1c03656

97. Achieving Reversible Precipitation-Decomposition of Reactive Li2S towards High-Areal-Capacity Lithium-Sulfur Batteries with a Wide-Temperature Range
Pan Zeng, Cheng Yuan, Jiao An, Xiaofei Yang, Chen Cheng, Tianran Yan, Genlin Liu, Ting-Shan Chan, Jun Kang, Liang Zhang*, Xueliang Sun*
Energy Storage Mater., 2022, 44, 425.
https://doi.org/10.1016/j.ensm.2021.10.035

96. BidirectionallyCatalyticPolysulfideConversion by High-Conductive Metal Carbides for Lithium-Sulfur Batteries
Genlin Liu, Cheng Yuan, Pan Zeng, ChenCheng, Tianran Yan, Kehua Dai, Jing Mao, Liang Zhang*
JournalofEnergyChemisty, 2022, 67, 73.
https://doi.org/10.1016/j.jechem.2021.09.035

2021
95. Ru-Catalyzed Reverse Water Gas Shift Reaction with Near-Unity Selectivity and Superior Stability
Rui Tang, Zhijie Zhu, Chaoran Li*, Mengqi Xiao, Zhiyi Wu, Dake Zhang, Chengcheng Zhang, Yi Xiao, Mingyu Chu, Alexander Genest, Günther Rupprechter, Liang Zhang, Xiaohong Zhang*, and Le He*
ACS Materials Lett., 2021, 3, 1652–1659.
https://doi.org/10.1021/acsmaterialslett.1c00523
94. Utilizing the Built-in Electric Field of p-n Junction to Spatially Propel the Stepwise Polysulfide Conversion in Lithium-Sulfur Batteries
Hongtai Li, Chi Chen, Yingying Yan, Tianran Yan, Chen Cheng, Dan Sun*, Liang Zhang*
Adv. Mater.,2021, 33, 2105067.
https://doi.org/10.1002/adma.202105067

93. Distinct Oxygen Redox Activities in Li2MO3 (M = Mn, Ru, Ir)
Zengqing Zhuo, Kehua Dai, Jinpeng Wu, Liang Zhang, Nobumichi Tamura, Yi-de Chuang, Jun Feng, Jinghua Guo, Zhi-xun Shen, Gao Liu, Feng Pan, Wanli Yang
ACS Energy Lett., 2021, 6, 3417.
https://doi.org/10.1021/acsenergylett.1c01101
92. StrategiestoImprovePerformanceof Phosphides Anode in Sodium-Ion Batteries
Wu Zhang, Tiefeng Liu, Yao Wang, Yujing Liu, Jianwei Nai, Liang Zhang, Ouwei Sheng, Xinyong Tao*
Nano Energy, 2021, 90, 106475.
https://doi.org/10.1016/j.nanoen.2021.106475
91. UndervaluedRolesofBinderinModulateSolid Electrolyte Interphase Formation of Silicon-Based Anode Materials
Lin Han, Ouwei Sheng, Tiefeng Liu,* Yujing Liu, Yao Wang, Jianwei Nai, Liang Zhang, Xinyong Tao*
ACS Appl.Mater. Interfaces, 2021, 13, 45139.
https://doi.org/10.1021/acsami.1c13971
90. A Newly-Explored Pd-Based Nanocrystal for the pH-Universal Electrosynthesis of H2O2
Chengyong Yang, Shuxing Bai, Zhiyong Yu, Yonggang Feng, Bolong Huang,* Qiuyang Lu, Tong Wu, Mingzi Sun, Ting Zhu, ChenCheng, Liang Zhang, Qi Shao,1and Xiaoqing Huang*
Nano Energy, 2021, 89, 106480.
https://doi.org/10.1016/j.nanoen.2021.106480
89. Carbon Lattice Structures in Nitrogen-Doped Reduced Graphene Oxide: Implications for Carbon-Based Electrical Conductivity
Ji Soo Roh, Hee Wook Yoon, Liang Zhang, Ju-Young Kim, Jinghua Guo, Hyo Won Kim
ACS Applied NanoMater., 2021, 4, 7897.
https://doi.org/10.1021/acsanm.1c01228
88. Boosting the Rate Performance of Li-SbatteriesviaTrace Cobalt Nanoparticles Embedded into Nitrogen-Doped Hierarchical Porous Carbon
Cheng Yuan, Pan Zeng, Chen Cheng, Tianran Yan, Genlin Liu, Wenmin Wang,*Jun Hu, Xin Li, Junfa Zhu, Liang Zhang*
CCS Chemistry, 2021, 3, 1972.
https://doi.org/10.31635/ccschem.021.202101214

87. Propelling Polysulfide Redox Conversion by d-bandmodulationforHigh Sulfur Loading and Low Temperature Lithium-Sulfur Batteries
Pan Zeng, Cheng Liu, Chen Cheng, Cheng Yuan, Kehua Dai, Jing Mao, Lirong Zheng, Jing Zhang, Lo-Yueh Chang, Shu-ChihHaw, Ting-Shan Chan,*Haiping Lin, and Liang Zhang*
J. Mater. Chem. A, 2021,9, 18526.
https://doi.org/10.1039/D1TA04870H

86. Highly Dispersed Indium Oxide Nanoparticles Supported on Carbon Nanorods Enabling Efficient Electrochemical CO2 Reduction
Binbin Pan, Guotao Yuan, Xuan Zhao, Na Han, Yang Huang, Kun Feng, Chen Cheng, Jun Zhong, Liang Zhang, Yuhang Wang,* and Yanguang Li*
Small Sci., 2021, 1, 2100029.
https://doi.org/10.1002/smsc.202100029
85. Research Progress on Layered Transition Metal Oxide Cathode Materials for Sodium Ion Batteries
Fanglin Wei, QiaoPing Zhang, Peng Zhang, WenQian Tian, Kehua Dai, Liang Zhang, Jing Mao,* Guosheng Shao*
J. Electrochem. Soc., 2021, 168, 050524.
https://doi.org/10.1149/1945-7111/abf9bf
84. Rational Design and Mass-scaleSynthesisofGuar-Derived Bifunctional Oxygen Catalyst for Rechargeable Zn-air Battery with Active Sites Validation
Ling Lin, Hao Sun, Xuzhou Yuan, Yindong Gu, Qiaoqiao Mu, Pengwei Qi, Tianran Yan, Liang Zhang, Yang Peng, Zhao Deng*
Chem. Engineering J., 2022, 428, 131225.
https://doi.org/10.1016/j.cej.2021.131225
83. Size-Dependent Selectivity of Electrochemical CO2 Reduction on Converted In2O3 Nanocrystals
Yang Huang, Xinnan Mao, Guotao Yuan, Duo Zhang, Binbin Pan, Jun Deng, Yunru Shi, Na Han, Chaoran Li, Liang Zhang, Lu Wang, Lin He, Youyong Li, Yanguang Li*
Angew. Chem. Int. Ed., 2021, 133, 15978.
https://doi.org/10.1002/anie.202105256
82. Titanium Carbide Nanosheets with Defect Structure for Photothermal-Enhanced Sonodynamic Therapy
Guangqiang Li, Xiaoyan Zhong, Xianwen Wang, Fei Gong, Huali Lei, Yangkai Zhou, Chengfei Li, Zhidong Xiao, Guoxi Ren, Liang Zhang, Zhiqiang Dong,* Zhuang Liu, Liang Cheng*
Bioactive Mater., 2022, 8, 409.
https://doi.org/10.1016/j.bioactmat.2021.06.021
81. The Effect of Water on Colloidal Quantum Dot Solar Cells
Guozheng Shi, Haibin Wang, Yaohong Zhang, Chen Cheng, Tianshu Zhai, Botong Chen, Xinyi Liu, Ryota Jono, Xinnan Mao, Yang Liu, Xuliang Zhang, Xufeng Ling, Yannan Zhang, Xing Meng, Yifan Chen, Steffen Duhm, Liang Zhang, Tao Li, Lu Wang, Shiyun Xiong, Takashi Sagawa, Takaya Kubo, Hiroshi Segawa, Qing Shen, Zeke Liu,* Wanli Ma*
Nature Commun., 2021, 12, 4381.
https://doi.org/10.1038/s41467-021-24614-7
80. Synergistic Effect of Co3Fe7 Alloy and N-doped Hollow Carbon Spheres with High Activity and Stability for High-Performance Lithium-Sulfur Batteries
Zhonghao Gu, Chen Cheng, Tianran Yan, Genlin Liu, Jinsen Jiang, Jing Mao, Kehua Dai, Jiong Li, Jinpeng Wu,*Liang Zhang*
Nano Energy, 2021, 86, 106111
https://doi.org/10.1016/j.nanoen.2021.106111

79. Catalyzing polysulfide redox conversion for promoting the electrochemical performance of lithium-sulfur batteries by CoFe alloy
Yue Hu, Chen Cheng, Tianran Yan, Genlin Liu, Cheng Yuan, Yingying Yan, Zhonghao Gu, Pan Zeng, Lirong Zheng, Jing Zhang, Liang Zhang*
Chem. Engineering J., 2021, 421, 129997.
https://doi.org/10.1016/j.cej.2021.129997

78. Grain boundary-engineered La2CuO4 perovskite nanobamboos for efficient CO2 reduction reaction
Juan Wang, Chen Cheng, Bolong Huang, Jianlei Cao, Leigang Li, Qi Shao, Liang Zhang, Xiaoqing Huang,*
Nano Lett., 2021, 21, 980.
https://doi.org/10.1021/acs.nanolett.0c04004
77. Water‐Surface Drag Coating: A New Route Toward High‐Quality Conjugated Small‐Molecule Thin Films with Enhanced Charge Transport Properties
Wei Deng, Yanling Xiao, Bei Lu, Liang Zhang, Yujian Xia, Chenhui Zhu, Xiujuan Zhang, Jinghua Guo, Xiaohong Zhang, Jiansheng Jie,*
Adv. Mater., 2021, 33, 2005915.
https://doi.org/10.1002/adma.202005915
76. Alloyed Palladium-Silver Nanowires Enabling Ultrastable Carbon Dioxide Reduction to Formate
Na Han#, Mingzi Sun#, Yuan Zhou, Jie Xu, Chen Cheng, Rui Zhou, Liang Zhang, Jun Luo, Bolong Huang* and Yanguang Li*
Adv. Mater., 2021, 33, 2005821.
https://doi.org/10.1002/adma.202005821
75. In situ surface-confined fabrication of single atomic Fe-N4 on N-doped carbon nanoleaves for oxygen reduction reaction
Xiaojing Jiang, Jianian Chen, Fenglei Lyu*, Chen Cheng, Qixuan Zhong, Xuchun Wang, Ayaz Mahsud, Liang Zhang*, Qiao Zhang*
J. Energy Chem., 2021, 59, 482.
https://doi.org/10.1016/j.jechem.2020.11.036
74. Vacancies Boosting Strategy Enabling Enhanced Oxygen Evolution Activity in a Library of Novel Amorphous Selenite Electrocatalysts
Lin Zhang, Chengjie Lu, Zeyi Wu, Yanan Wang, Le Jiang, Liang Zhang*, ChenCheng, Zhengming Sun, Linfeng Hu*
Applied Catalysis B: Environmental, 2021, 284, 119758.
https://doi.org/10.1016/j.apcatb.2020.119758
73. Na-substitution Induced Oxygen Vacancy Achieving High Transition Metal Capacity in Commercial Li-richCathode
Quanxin Ma, Zaijun Chen, Shengwen Zhong, Junxia Meng, Fulin Lai, Zhifeng Li, ChenCheng, Liang Zhang,* Tiefeng Liu,*
Nano Energy, 2021, 81, 105622.
https://doi.org/10.1016/j.nanoen.2020.105622
72. Lithiated Aromatic Biopolymer as High-Performance Organic Anodes for Lithium-IonStorage
Gongxun Lu, Jianhui Zheng, Chengbin Jin, Tianran Yan, Liang Zhang, Jianwei Nai,*Yao Wang, Yujing Liu, Tiefeng Liu, Xinyong Tao*
Chem. Engineering J., 2021, 409, 127454.
https://doi.org/10.1016/j.cej.2020.127454
71. Exploration of Materials Electrochemistry in Rechargeable Batteries using Advanced In-Situ/Operando X-ray Absorption Spectroscopy
Tianran Yan,+ Chen Cheng,+ Liang Zhang*
Electronic Structure, 2021, 3, 013001.
https://doi.org/10.1088/2516-1075/abea09
70. Recent Progress of Functional Separators with Catalytic Effects for High-Performance Lithium-Sulfur Batteries
Cheng Yuan, Xiaofei Yang, Pan Zeng, Jing Mao, Kehua Dai, Liang Zhang,* Xueliang Sun*
Nano Energy, 2021, 84, 105928.
https://doi.org/10.1016/j.nanoen.2021.105928

69. Boosting polysulfide redox conversion of Li-S batteries by one-step-synthesized Co-Mo bimetallic nitride
Yinging Yan, Hongtai Li, Chen Cheng, Tianran Yan, Wenping Gao, Jing Mao, Kehua Dai, Liang Zhang*
Energy Chem., 2021, 61, 336.
https://doi.org/10.1016/j.jechem.2021.03.041

68. Carbon decorated Li3V2 (PO4)3 for high-rate lithium-ion batteries: Electrochemical performance and charge compensation mechanism
Manling Ding, Cheng Cheng, Qiulong Wei,* Yue Hu, Ying Yan, Kehua Dai, Jing Mao, Jinghua Guo, Liang Zhang,* Liqiang Mai,*
J. Energy Chemistry, 2021, 53, 124.
https://doi.org/10.1016/j.jechem.2020.04.020

2020
67. Exploring the Charge Compensation Mechanism of P2-Type Na0.6Mg0.3Mn0.7O2 Cathode Materials for Advanced Sodium-Ion Batteries
Chen Cheng, Manling Ding, Tianran Yan, Kehua Dai, Jing Mao, Nian Zhang, Liang Zhang,* Jinghua Guo*
Energies, 2020, 13, 5279.
https://doi.org/10.3390/en13215729

66. Enabling Facile Anionic Kinetics through Cationic Redox Mediator in Li-Rich Layered Cathodes
Ning Li, Jue Wu, Sooyeon Hwang, Joseph K Papp, Wang Hay Kan, Liang Zhang, Chenhui Zhu, Bryan D McCloskey, Wanli Yang,* Wei Tong,*
ACS Energy Lett., 2020, 5, 3535.
https://doi.org/10.1021/acsenergylett.0c01880
65. Detailed CharacterizationofAnAnnealedReduced Graphene Oxide Catalyst for the Selective Peroxide Formation Activity
Tae Hoon Lee, Tae Hwan Choi, Liang Zhang, Juyoung Kim, Jinghua Guo, Ho Bum Park, and Hyo Won Kim,*
ACS Appl.Mater. Interfaces, 2020, 12, 46439.
https://doi.org/10.1021/acsami.0c11359
64. H-Implanted Pd Icosahedra for Oxygen Reduction Catalysis:FromCalculationtoPractice
Lingzheng Bu, Xiaorong Zhu, Yiming Zhu, Chen Cheng, Yafei Li, Qi Shao, Liang Zhang, and Xiaoqing Huang,*
CCS Chemistry, 2020, 2, 1972.
https://doi.org/10.31635/ccschem.020.202000319
63. Elucidating the Redox Behavior in Different P-type Layered Oxides for Sodium-Ion Batteries
Xiaoli Chen, Chen Cheng, Manling Ding, Yujian Xia, Lo-Yueh Chang, Ting-Shan Chan, Haolin Tang*, Nian Zhang, and Liang Zhang,*
ACS Appl.Mater. Interfaces, 2020, 12, 43665.
https://doi.org/10.1021/acsami.0c11570

62. Enhanced Catalytic Conversion of Polysulfides Using Bimetallic Co7Fe3 for High-performanceLithium-Sulfur Batteries
Pan Zeng+, Cheng Liu+, Xiaofeng Zhao, Cheng Yuan, Yungui Chen,* Haiping Lin,* and Liang Zhang*
ACS Nano, 2020, 14, 11558.
https://doi.org/10.1021/acsnano.0c04054

61. Electrochemical Reactivity and Passivation of Silicon Thin-Film Electrodes in Organic Carbonate Electrolytes
Ivana Hasa*, Atetegeb Haregewoin, Liang Zhang, Jinghua Guo, Gabriel Veith, Philip Ross, and Robert Kostecki*
ACS Appl.Mater. Interfaces, 2020, 12, 40879.
https://doi.org/10.1021/acsami.0c09384
60. Anion-cation synergetic contribution to a high capacity, structurally stable cathode compound for sodium-ion batteries
Hang Xu, Chen Cheng, Xueping Zhang, Jianghua Wu, Liang Zhang, Shaohua Guo* and Haoshen Zhou
Adv. Funct. Mater., 2020, 30, 2005164.
https://doi.org/10.1002/adfm.202005164
59. Deciphering the Solvent Effect for the Solvation Structure of Ca2+ in Polar Molecular Liquids
Guoxi Ren, Yang Ha, Yi-Sheng Liu, Xuefei Feng, Nian Zhang, Pengfei Yu, Liang Zhang, Wanli Yang, Jun Feng, Jinghua Guo, Xiaosong Liu
J. Phys. Chem. B, 2020, 124, 3408
https://doi.org/10.1021/acs.jpcb.0c02437
58. Selective Adsorption and Electrocatalysis of Polysulfides through Hexatomic Nickel Clusters Embedded in N-Doped Graphene toward High-Performance Li-S Batteries
Jiapeng Ji, Ying Sha, Zeheng Li, Xuehui Gao, Teng Zhang, Shiyu Zhou, Tong Qiu, Shaodong Zhou, Liang Zhang, Min Ling,* Yanglong Hou,* Chengdu Liang
Research, 2020, 5714349.
https://doi.org/10.34133/2020/5714349
57. Quantification of Anionic Redox Chemistry in a Prototype Na-Rich Layered Oxide
Yue Hu, Tiefeng Liu, Chen Cheng, Yingying Yan, Manling Ding, Ting-Shan Chan, Jinghua Guo, Liang Zhang*
ACS Appl.Mater. Interfaces, 2020, 12, 3617.
https://doi.org/10.1021/acsami.9b19204

2019
56. Deciphering the reaction mechanism of lithium-sulfur batteries by in-situ/operando synchrotron-based characterization techniques
Yingying Yan, Chen Cheng, Liang Zhang,*Yanguang Li,*Jun Lu
Adv. Energy Mater., 2019, 9, 1900148.
https://doi.org/10.1002/aenm.201900148

55. Zinc-Air Batteries: Are They Ready for Prime Time?
Jie Zhang, Qixing Zhou, Yawen Tang, Liang Zhang,* Yanguang Li
Chem. Sci., 2019, 10, 8924.
https://doi.org/10.1039/c9sc04221k
54. Elucidation of anionic and cationic redox reactions in a prototype sodium layered oxide cathode
Chen Cheng, Siyuan Li, Tiefeng Liu, Yujian Xia, Lo-Yueh Chang, Yingying Yan, Manling Ding, Yue Hu, Jinpeng Wu*, Jinghua Guo*, Liang Zhang*
ACS Appl.Mater. Interfaces, 2019, 11, 41304.
https://doi.org/10.1021/acsami.9b13013

53. Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis
Mufan Li, Kaining Duanmu, Chengzhang Wan, Tao Cheng, Liang Zhang, Sheng Dai, Wenxin Chen, Zipeng Zhao, Peng Li, Huilong Fei, Yuanming Zhu, Rong Yu, Jun Luo, Ketao Zang, Zhaoyang Lin, Mengning Ding, Jin Huang, Hongtao Sun, Jinghua Guo, Xiaoqing Pan, William A Goddard, Philippe Sautet, Yu Huang, Xiangfeng Duan
Nature Catalysis, 2019, 2, 495.
https://doi.org/10.1038/s41929-019-0279-6
52. Carbon defect characterization of nitrogen-doped reduced graphene oxide electrocatalysts for the two electron oxygen reduction reaction
Hyo Won Kim, Hun Park, Ji Soo Roh, Jae Eun Shin, Tae Hoon Lee, Liang Zhang, Young Hoon Cho, Hee Wook Yoon, Vanessa J Bukas, Jinghua Guo, Ho Bum Park, Tae Hee Han, Bryan D McCloskey
Chem. Mater., 2019, 31, 3967.
https://doi.org/10.1021/acs.chemmater.9b00210
51. Investigation of the Nanocrystal CoS2 Embedded in 3D Honeycomb-like Graphitic Carbon with a Synergistic Effect for High-Performance Lithium Sulfur Batteries
Guo Ai, Qianqian Hu, Liang Zhang, Kehua Dai, Jin Wang, Zijia Xu, Yu Huang, Bo Zhang, Dejun Li, Ting Zhang, Gao Liu, Wenfeng Mao
ACS Appl.Mater. Interfaces, 2019, 11, 33987.
https://doi.org/10.1021/acsami.9b11561
50. High Lithium Sulfide Loading Electrodes for Practical Li/S Cells with High Specific Energy
Dan Sun, Yoon Hwa, Liang Zhang, Jingwei Xiang, Jinghua Guo, Yunhui Huang, Elton J. Cairns
Nano Energy, 2019, 64, 103891.
https://doi.org/10.1016/j.nanoen.2019.103891
49. Rapid Flame-annealed CuFe2O4 as Efficient Photocathode for Photoelectrochemical Hydrogen Production
Sangwook Park, Ji Hyun Baek, Liang Zhang, Jae Myeong Lee, Kevin H Stone, In Sun Cho, Jinghua Guo, Hyun Suk Jung, Xiaolin Zheng
ACS Sustainable Chemistry & Engineering, 2019, 7, 5867.
https://doi.org/10.1021/acssuschemeng.8b05824
48. In-situ/operando X-ray absorption spectroscopy for understanding the reaction mechanism of lithium-sulfur batteries
Liang Zhang* and Jinghua Guo,*
Arabian Journal for Science and Engineering, 2019, 44, 6217.
https://doi.org/10.1007/s13369-019-03808-8
2018
47. Tracking the Chemical and Structural Evolution of the TiS2 Electrode in the Lithium-Ion Cell using Operando X-ray Absorption Spectroscopy
Liang Zhang, Dan Sun, Jun Kang, Hsiao-Tsu Wang, Shang-Hsien Hsieh, Way-Faung Pong, Hans A. Bechtel, Jun Feng, Lin-Wang Wang, Elton J. Cairns, Jinghua Guo
Nano Lett., 2018,18, 4506.
46. Conversion Reaction of Vanadium Sulfide Electrode in the Lithium-Ion Cell: Reversible or Not Reversible?
Liang Zhang, Qiulong Wei, Dan Sun, Ning Li, Huanxin Ju, Jun Feng, Junfa Zhu, Liqiang Mai, Elton J Cairns, Jinghua Guo
Nano Energy, 2018, 51, 391.
45. The synergetic interaction between LiNO3 and lithium polysulfides forsuppressingshuttle effect of lithium-sulfur batteries
Liang Zhang, Min Ling, Jun Feng, Liqiang Mai, Gao Liu, Jinghua Guo
Energy Storage Mater., 2018, 11,24.
44. Electrochemical reaction mechanism of the MoS2 electrode in a lithium-ion cell revealed by in-situ and operando X-ray absorption spectroscopy
Liang Zhang, Dan Sun, Jun Kang, Jun Feng, Hans A. Bechtel, Lin-Wang Wang, Elton J.Carins, Jinghua Guo
Nano Lett., 2018, 18, 1466.
43. Understanding the electrochemical reaction mechanism of VS2 nanosheets in lithium-ion cells by multiple in situ and ex situ X-ray spectroscopy
Liang Zhang, Dan Sun, Qiulong Wei, Huanxin Ju, Jun Feng, Junfa Zhu, Liqiang Mai, Elton J Cairns, Jinghua Guo
J. Phys. D: Appl. Phys., 2018, 51, 494001.
42. Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts
Hyo Won Kim, Michael B. Ross, Nikolay Kornienko, Liang Zhang, Jinghua Guo, Peidong Yang,ByranD. McCloskey
Nature Catalysis, 2018, 1, 282.
41. Controlling the Self-Metalation Rate of Tetraphenylporphyrins on Cu(111) via Cyano Functionalization
Michael Lepper, Julia Kӧbl, Liang Zhang, Manuel Meusel, Helen Hӧlzel, Dominik Lungerich, Norbert Jux, Abner de Siervo, Bernd Meyer, Hans-Peter Steinrück, and Hubertus Marbach
Angew. Chem. Inter. Ed., 2018, 57, 10074.
40. Facile Integration of Low-Cost Black Phosphorus in Solution-Processed Organic Solar Cells with Improved Fill Factor and Device Efficiency
Yun Zhao, Teresa L Chen, Liangang Xiao, Matthew A Kolaczkowski, Liang Zhang, Liana M Klivansky, Virginia Altoe, Bining Tian, Jinghua Guo, Xiaobin Peng, Yue Tian, Yi Liu
Nano Energy, 2018, 53, 345.
39. Metalation and coordination reactions of 2H-meso-trans-di(p-cyanophenyl)porphyrin on Ag(111) with coadsorbed cobalt atoms
Jan Kuliga, Liang Zhang, Michael Lepper, Dominik Lungerich, Helen Hölzel, Norbert Jux, Hans-Peter Steinrück, and Hubertus Marbach
Phys. Chem. Chem. Phys.,2018,20, 25062.
38. Enhancing Catalytic Activity of MoS2 Basal Plane S-Vacancy by Co Cluster Addition
Sangwook Park, Joonsuk Park, Hadi Abroshan, Liang Zhang, Jung Kyu Kim, Jiaming Zhang, Jinghua Guo, Samira Siahrostami, and Xiaolin Zheng
ACS Energy Lett., 2018, 3, 2685.
37. The electrochemical behavior of poly 1-pyrenemethyl methacrylate binder and its effect on the interfacial chemistry of a silicon electrode
Atetegeb Meazah Haregewoin, Lydia Terborg, Liang Zhang, Sunhyung Jurng, Brett L Lucht, Jinghua Guo, Philip N Ross, Robert Kostecki
J. Power Source, 2018, 376, 152.
36. Tailored reaction route by micropore confinement for Li-S batteriesoperatingUnderleanelectrolytecondition
Hui Wang, Brian D Adams, Huilin Pan, Liang Zhang, Kee Sung Han, Luis Estevez, Jun Feng, Jinghua Guo, Kevin R. Zavadil, Yuyan Shao, and Ji-Guang Zhang
Adv. Energy Mater., 2018, 8, 1800590.
35. Sodium Ion Capacitor Using Pseudocapacitive Layered Ferric Vanadate Nanosheets
Qiulong Wei, Yalong Jiang, Xiaoshi Qian, Liang Zhang, Qidong Li, Shuangshuang Tan, Kangning Zhao, Wei Yang, Qinyou An, Jinghua Guo, Liqiang Mai
Iscience, 2018, 6, 212.
2017
34. Revealing the electrochemical charging mechanism of nanosized Li2S cathode by in-situ and operando X-ray absorption spectroscopy
Liang Zhang, Dan Sun, Jun Feng, Elton J.Carins, Jinghua Guo
Nano Lett., 2017, 17, 5084.
33. Effective electrostatic confinement of polysulfides in lithium/sulfur batteries by a functional binder
Liang Zhang, Min Ling, Jun Feng, Gao Liu, Jinghua Guo
Nano Energy, 2017, 40, 559.
32. On the critical role of the substrate: theadsorptionbehavioroftetrabenzoporphyrins on different metal surfaces
Liang Zhang, Michael Lepper, Michael Stark, Teresa Menzel, Dominik Lungerich, Norbert Jux, Wolfgang Hieringer, Hans-Peter Steinrück and Hubertus Marbach
Phys. Chem. Chem. Phys.,2017,19, 20281.
31. Revealing the electronic structure of LiC6 by soft X-ray spectroscopy
Liang Zhang, X. Li, A. Augustsson, C. M. Lee, J.-E. Rubensson, J. Nordgren, P. N. Ross, J.-H. Guo
Appl. Phys. Lett., 2017, 110, 104106.
30. On the Adsorption Behavior of a Cyano-Functionalized Porphyrin on Cu(111) and Ag(111): From Molecular Wires to Ordered Supramolecular Two-Dimensional Aggregates
Michael Lepper, Tobias Schmitt, Martin Gurrath, Marco Raschmann, Liang Zhang, Michael Stark, Helen Holzel,NobertJux, Bernd Meyer, M. Alexander Schneider, Hans-Peter Steinrück and Hubertus Marbach
J. Phys. Chem. C, 2017, 121, 26361.
29. Nucleophilic substitution between polysulfides and bindersunexpectedlystabilizinglithiumsulfurbattery
Min Ling, Liang Zhang, Jun Feng, Jinghua Guo, Gao Liu
Nano Energy, 2017, 38, 82.
28. Using soft X-ray absorption spectroscopy to characterize electrode/electrolyte interfaces in-situ and operando
Yifan Ye, Chenghao Wu, Liang Zhang, Yi-Sheng Liu, Per-Anders Glans-Suzuki, Jinghua Guo
J. Electron. Spectrosc. Relat. Phenom., 2017, 221, 2.
27. Interfacial interactions between CoTPP molecules and MgO(100) thin films
Matthias Franke, Daniel Wechsler, Quratulain Tariq, Michael Rӧckert, Liang Zhang, Pardeep Kumar Thakur, Nataliya Tsud, Sofiia Bercha, Kevin Prince, Tien-Lin Lee, Hans-Peter Steinrück and Ole Lytken
Phys. Chem. Chem. Phys.,2017,19, 11549.
26. Adsorption structure of cobalt tetraphenylporphyrin on Ag(100)
Daniel Wechsler, Matthias Franke, Quratulain Tariq, Liang Zhang, Tien-Lin Lee, Pardeep Kumar Thakur, Nataliya Tsud, Sofiia Bercha, Kevin Charles Prince, Hans-Peter Steinrück and Ole Lytken
J. Phys. Chem. C, 2017, 121, 5667.
2016
25. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction
Mufan Li, Zipeng Zhao, Tao Cheng, Alessandro Fortunelli, Chih-Yen Chen, Rong Yu, Qinghua Zhang, Lin Gu, Boris Merinov, ZhaoyangLin, Enbo Zhu,TedYu, Qingying Jia, Jinghua Guo, Liang Zhang, William A. Goddard III, Yu Huang, Xiangfeng Duan
Science, 2016, 354, 1414.
24. Comprehensive electronic structure characterization of pristine and nitrogen/phosphorus doped carbon nanocages
Hui Zhang, Xin Li, Duo Zhang, Liang Zhang, Mukes Kapilashrami, Sun Tao, Per-Anders Glans, Junfa Zhu, Jun Zhong, Zeng Hu, Jinghua Guo and Xuhui Sun
Carbon, 2016, 103, 480.
23. 2H-tetrakis-(3,5-di-tert-butyl)-phenylporphyrin on Cu(110):roomtemperature self-metalation and surface reconstruction facilitated self-assembly
Liang Zhang, Michael Lepper, Michael Stark, Dominik Lungerich, Norbert Jux, Hans-Peter Steinrück and Hubertus Marbach
Chem. Eur. J,2016, 22, 1.(Hot paper)
2015
22. Temperature-Dependent Reactions of Phthalic Acid on Ag(100)
Matthias Franke, Florencia Marchini, Liang Zhang, Quratulain Tariq, Nataliya Tsud, Mykhailo Vorokhta, Martin Vondráček, Kevin C Prince, Michael Röckert, Federico José Williams, Hans-Peter Steinrück, Ole Lytken
J. Phys. Chem. C, 2015, 119, 23580.
21. Role of Specific Intermolecular Interactions for the Arrangement of Ni (II)-5, 10, 15, 20-Tetraphenyltetrabenzoporphyrin on Cu (111)
Michael Lepper, Liang Zhang, Michael Stark, Stefanie Ditze, Dominik Lungerich, Norbert Jux, Wolfgang Hieringer, Hans-Peter Steinrück, Hubertus Marbach
J. Phys. Chem. C, 2015, 119, 1987.
20. Self-assembly and coverage dependent thermally induced conformational changes of Ni (ii)-meso-tetrakis (4-tert-butylphenyl) benzoporphyrin on Cu (111)
Liang Zhang, Michael Lepper, Michael Stark, Dominik Lungerich, Norbert Jux,WolfangHieringer, Hans-Peter Steinrück and Hubertus Marbach
Phys. Chem. Chem. Phys.,2015, 17, 13066.
19. Engineering the metal–organic interface by transferring a high-quality single layer graphene on top of organic materials
Xuefei Feng,#Liang Zhang,# Yifan Ye, Yong Han, Qian Xu, Ki-Jeong Kim, Kyuwook Ihm, Bongsoo Kim, Hans Bechtel, Michael Martin, Jinghua Guo and Junfa Zhu
Carbon, 2015, 87, 78. (# equallycontributed)
18. Band mapping of graphene studied by resonant inelastic X-ray scattering
Liang Zhang, Jinghua Guo and Junfa Zhu
Fuller. Nanotub. Car. N.,2015, 5, 471.
2014
17. Massive conformational changes during thermally induced self-metalation of 2 H-tetrakis-(3, 5-di-tert-butyl)-phenylporphyrin on Cu (111)
M. Stark, S. Ditze, M. Lepper, L. Zhang, H. Schlott, F. Buchner, M. Röckert, M. Chen, O. Lytken and H.-P. Steinrück
Chem. Commun., 2014, 50, 10225.
16. The effect of thermal reduction on the photoluminescence and electronic structures of graphene oxides
C.-H. Chuang, Y.-F. Wang, Y.-C. Shao, Y.-C. Yeh, D.-Y. Wang, C.-W. Chen, J. Chiou, S. C. Ray, W. Pong and L. Zhang, J. F. Zhu and J. H. Guo
Sci. Rep., 2014, 4, 4525.
2013
15. Simultaneous reduction and N-doping of graphene oxides by low-energy N2+ ion sputtering
Liang Zhang, Yinfa Ye, Dingling Cheng, Wenhua Zhang, Haibin Pan and Junfa Zhu
Carbon, 2013, 62, 365.
14. Probing substrate-induced perturbations on the band structure of graphene on Ni(111) by soft X-ray emission spectroscopy
Liang Zhang, Nikolay Vinogradov, Alexei Preobrajensski, Sergei Butorin, Junfa Zhu and Jinghua Guo
Chem. Phys. Lett., 2013, 580, 43.
13. Intercalation of Li at the graphene/Cu interface
Liang Zhang, Yifan Ye, Dingling Cheng, Haibin Pan, and Junfa Zhu
J. Phys. Chem. C, 2013, 117, 9259.
2012
12. Electronic band structure of graphene from resonant soft X-ray spectroscopy: the role of core-hole effects
Liang Zhang, Nuchalee Schwertfager, Xin Li, Per-Anders Glans-Suzuki, Yi Luo, Junfa Zhu, Walter Lambrecht and Jinghua Guo
Phys. Rev. B, 2012, 86, 245430.
11. Electronic structure and chemical bonding of a graphene oxide-sulfur nanocomposite for use in superior performance lithium-sulfurcells
Liang Zhang, Liwen Ji, Per-Anders Glans-Suzuki, Yuegang Zhang, Junfa Zhu, Jinghua Guo
Phys. Chem. Chem. Phys.,2012,14, 13670.
10. Electronic structure study of ordering and interfacial interaction in graphene/Cu composites
Liang Zhang, Elad Pollak, Wei-Cheng Wang, Peng Jiang, Per-Anders Glans Suzuki, Yuegang Zhang, Jordi Cabana, Robert Kostecki, Chinglin Chang, Miquel Salmeron, Junfa Zhu, Jinghua Guo
Carbon, 2012, 50, 5316.
9. Constable, Direct observation of two different electron holes in hematite during the photo-electrochemical water splitting process
Artur Braun, Kevin Sivula, Debajeet K. Bora, Junfa Zhu, Liang Zhang, Thomas Graule, Jinghua Guo, Michael Gratzel,EdwinC.
J. Phys. Chem. C, 2012, 116, 16870.
8. Ca carboxylate formation at the calcium/poly(methyl methacrylate) interface
Huanxin Ju, Xuefei Feng, Yifan Ye, Liang Zhang, Haibin Pan, Charles T. Campbell, Junfa Zhu
J. Phys. Chem. C, 2012, 112, 20465.
7. Iron resonant photoemission spectroscopy on anodized hematite points to electron hole doping during anodization
Artur Braun, Qianli Chen, Dorota Flak, Giuseppino Fortunato, Krisztina Gajda-Schrantz, Michael Gratzel, Thomas Graule, Jinghua Guo, Tzu-Wen Huang, Zhi Liu, Anastasiya Popelo, Kevin Sivula, Hiroki Wadati, Pradeep Wyss, Liang Zhang, Junfa Zhu
ChemPhysChem, 2012, 13, 2937.
6. Photoemission spectroscopy study of the interface formation between Li and regioregular poly(3-hexylthiophene)
Xuefei Feng, Wei Zhao, Huanxin Ju, Liang Zhang, Wenhua Zhang, Junfa Zhu
Org. Electron, 2012, 13, 1060.
2011
5. Graphene oxide as a sulfur composite electrode for lithium/sulfurcells
Liwen Ji, Mumin Rao, Haimei Zheng, Liang Zhang, Yuanchang Li, Wenhui Duan, Jinghua Guo, Elton J.Carirns, and Yuegang Zhang
J. Am. Chem. Soc., 2011, 133, 18522.
4. Growth, Structure, and Stability of Au on Ordered ZrO2(111) Thin Films
Pan, Y. H.; Gao, Y.; Wang, G. D.; Kong, D. D.; Zhang, L.; Hou, J. B.; Hu, S. W.; Pan, H. B.; Zhu, J. F.
J. Phys. Chem. C, 2011, 115, 10744.
3. Epitaxial growth of ultrathin ZrO2(111) films on Pt(111)
Gao, Y.; Zhang, L.; Pan, Y. H.; Wang, G. D.; Xu, Y.; Zhang, W. H.; Zhu, J. F.
Chin. Sci. Bull., 2011, 56, 502.
2010
2. Direct Synthesis of Nickel(II) Tetraphenylporphyrin and Its Interaction with a Au(111) Surface: A Comprehensive Study
Chen, M.; Feng, X. F.; Zhang, L.; Ju, H. X.; Xu, Q.; Zhu, J. F.; Gottfried, J. M.; Ibrahim, K.; Qian, H. J.; Wang, J.O.
J. Phys. Chem. C, 2010, 114, 9908.
2009
1. Electronic structure and chemical reaction of Ca deposition on regioregular poly(3-hexylthiophene) surfaces
Wei Zhao, Yuxian Guo, Xuefei Feng, Liang Zhang, Wenhua Zhang, Junfa Zhu
Chin. Sci. Bull., 2009, 11, 1978.